ME 172 Introduction to Computer Programming Language Sessional

Lecture 3: Switch case, break and introduction to loop

Dr. Md Mamun
Professor
Mantaka Taimullah
Lecturer
Dept of Mechanical Engg, BUET

Class Performance Test

- Write a program that will take two integers as input and then find the largest even number between the two.
(i.e. if both the input numbers are even, it will compare and print the larger. If one is odd and one is even, it will print the even. If both are odd, it will print an error message.)

switch statement

General form

- When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following the switch statement.
- Not every case needs to contain a break. If no break appears, the flow of control will fall through to subsequent cases until a break is reached.

A switch statement can have an optional default case, which must appear at the end of the switch. The default case can be used for performing a task when none of the cases is true. No break is needed in the default case.

Example on switch statement - 1

```
#include <stdio.h>
int main()
{
int num;
```

This is a program that takes an input number ranging from 1 to 4 and tells you which number is taken as input. There are 4 possibilities and if the input is not within the range the program can identify it.

```
printf(''Enter any integer between 1 to 4:');
scanf("%d",&num);
switch(num)
    case 1: printf('ONE'');
        break;
case 2: printf("TWO");
                break;
case 3: printf("THREE");
                break;
case 4: printf('FOUR");
            break;
default: printf("OUT OF BOUND");
    }
return 0;
}
Variable
Case value
```

```
int main()
```

int main()
{
{
char letter;
char letter;
printf("Enter a, b or c");
printf("Enter a, b or c");
scanf("%c", \&letter);
scanf("%c", \&letter);
switch(letter)
switch(letter)

name
name
case 'a': printf("First letter");
case 'a': printf("First letter");
break;
break;
case 'b': printf("Second letter");
case 'b': printf("Second letter");
break;
break;
case 'c': printf("Third letter");
case 'c': printf("Third letter");
break;
break;
default: printf("OUT OF BOUND");
default: printf("OUT OF BOUND");
}
}

Example Problem

- Write a program that will take an expression containing two numbers and an arithmetic operator between them (e.g. $2+3$ or $8 / 4$) from keyboard and will print out the result. (Use switch)
- If + is entered, it will add the two numbers, if - is entered, it will subtract the two numbers
Make sure that an error will be printed should 0 be given as a divisor.

SOLUTION

\#include<stdio.h> int main()
int $a, b ;$ char op;
printf("Enter the expression: "); scanf("\%d \%c \%d",\&a,\&op,\&b);

```
switch(op)
        case '+': printf(" = %d",a+b); break;
        case '-': printf(" = %d ",a-b); break;
        case 'x':
        case '*': printf(" = %d",a*b); break;
        case '/':
            if(b!=0) printf(" = %d",a/b);
        else printf("Value of divisor can't be zero");
        break;
    default : printf("Unknown Operator");
return 0;
}
```


LOOPS!

- You may encounter situations, when a block of code needs to be executed several number of times. In general, statements are executed sequentially: The first statement in a function is executed first, followed by the second, and so on.
- Programming languages provide various control structures that allow for more complicated execution paths.
- A loop statement allows us to execute a statement or group of statements multiple times
for loop
Executes a sequence of statements multiple times and abbreviates the code that manages the loop variable.

General form

```
for loop
for( initialization; conditional test ; increment)
{
statements;
------------
}
```


Practice Example

- The following is a program that will print the answer of the following series, Sum $=1+2+3+4+\ldots \ldots . .+n$
n is a positive integer that will be taken as input from the user.
\#include<stdio.h>
int main()
\{

```
int i, n, sum = 0;
printf("Enter the value of n: ");
scanf("%d",&n);
for(i=1; i<=n; i++){
    sum = sum+i;
}
printf("The sum of the series is =%d ", sum);
return 0;
```


Class Performance Test

- Write a program to calculate the factorial of a given positive integer. The input number should be taken from the user through keyboard. Use for loop.

Answer:

\#include<stdio.h>
int main()\{
int num, $;$;
long fact $=1$;
printf("Enter the value to find the factorial: ");
scanf("\%d",\&num);
for(i=1; $i<=$ num $; i++$ fact $=$ fact ${ }^{*}$;
printf("Factorial of \%d is = \%ld ",num, fact);
return 0 ;

Another Example of for loop

-Write a program to evaluate the following series

$$
y=x+x^{2} / 2+x^{3} / 3+\ldots \ldots n \text { nth term }
$$

Use for loop.

```
#include<stdio.h>
#include<math.h>
int main()
{
    int i,j,n;
    float x, sum=0;
    printf("Enter x & n: ");
    scanf("%f %d", &x, &n);
    for(i=1;i<=n;i++){
        sum=sum+ pow(x,i)/i;
    }
    printf("%.3f",sum);
    return 0;
}
```


Multiple conditions

int i, j;
for $(\mathrm{i}=1, \mathrm{j}=10 ; \mathrm{i}\langle=10, \mathrm{j}>=1 ; \mathrm{i}++, \mathrm{j}--)$
\{ printf("\%dlt",i); printf("\%d\n",j);
\}

Commas separate the conditions

C programming allows to use one loop inside another loop.

$$
\text { \{ statement(s); \} }
$$

statement(s);

Example (Nested Loop)

```
Using for loop
int main(){
int i, n, line;
printf("How many lines? : ");
scanf("%d", &n);
    for(line=n;line>=1;line--){
        for(i=1;i<=line;i++) {
        printf("%d ",i);
        }
        printf("\n");
    }
return 0;
```

\}
int main()\{
int i, n, line;
printf("How many lines? : ");
scanf("\%d", \&n);
for(line= ; ;line>=1; line--) \{
for(i=1;i<=line;i++) \{ printf("\%d ",i);

Make the following graph

1234
123
12
1

Class Performance Test

- Write a program that will take a number, n as input and print a rectangle that will contain n number of * on one side and $n+2$ number of * on the other side

For example, if $n=3$

Desired output:

Solution

```
#include<stdio.h>
int main()
{
    int i,j,n;
    printf("Enter the magic number: ");
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        for(j=1;j<=n+2;j++) printf("*");
        printf("\n");
    }
return 0;
}
```

\#Problem 6
Draw a Pascal's triangle like the following one using C programming (for loop)

$c(n, k)=n!/(k!(n-k)!) \quad \mathbf{1}$
 Try this at home!
 11
 $$
\begin{array}{lll} 1 & 2 \end{array}
$$
 $$
1331
$$
 $$
14641
$$
 $$
\begin{array}{llllll} 1 & 5 & 10 & 10 & 5 & 1 \end{array}
$$

Example problem

Write down a program to check whether any integer bigger than 1 is a prime number or not

```
#include<stdio.h>
int main()
{
    int i,n, is_prime=1;
    printf("Enter an integer: ");
    scanf("%d", &n);
    for(i=2;i<n;i++){
        if(n%j==0) is_prime=0;
    }
    if(is_prime==1) printf("Prime");
    else printf("Not prime");
    return 0;
}
```


break and continue statements

break statements are used to break a loop before reaching the terminating condition. When program finds a break statement, immediately it jumps to the end of the loop.
continue statements are used to avoid execution of subsequent instructions in a code from a certain point. If it is used inside a loop, the compiler will not execute commands following continue statement and restart the loop. When program finds a continue statement, immediately it jumps to the beginning of the loop.


```
// Program to calculate sum of the positive numbers of 10 input numbers.
# include <stdio.h>
int main()
{
    int i;
    float number, sum = 0.0;
    for(i=1; i <= 10; i++)
    {
        printf("Enter number #%d: ",i);
        scanf("%f",&number);
        if(number < 0.0)
        {
            continue;
        }
        sum += number; // sum = sum + number;
}
printf("Sum = %.2lf",sum);
return 0;
}
```


Recap: Prime number

Write down a program to check whether any integer bigger than 1 is a prime number or not.
Try to make the program efficient by reducing computational effort.

```
#include<stdio.h>
#include<math.h>
int main()
{
    int i,n, is_prime=1;
    printf("Enter an integer: ");
    scanf("%d", &n);
    for(i=2;i<=sqrt(n);i++){
        if(n%i==0){ is_prime=0; break;}
    }
    if(is_prime==1) printf("Prime");
    else printf("Not prime");
    return 0;
}
```


Assignments

1) Write a program to evaluate the sine series using for loop.

$$
\sin (x)=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+\ldots \ldots \ldots \ldots .10 \text { th term }
$$

2) Write a program that determines the number of trailing zeros at the end of X ! (X factorial), where X is an arbitrary number. For instance, 5 ! is 120 , so it has one trailing zero.
3) Solve the problem of Pascal's triangle mentioned in the lecture.
